Skip to main content
European Commission logo
Research and Innovation

Energy-saving nano-surfaces inspired by nature

More efficient, longer-lasting machine and vehicle components, improved medical implants and novel fluid control technologies are just a few of the potential applications emerging from an EU-funded project inspired by the unique ways in which the skins of some animals interact with water.

© Dr. P. Commans, RWTH and Mrs Ulrike Hermens, Fraunhofer IPT, 2016

PDF Basket

No article selected

EU-funded LINABIOFLUID researchers used electron microscopes to study desert-dwelling horned lizards, which survive in arid conditions by collecting dew through their skin, and flat bark bugs, which change colour to camouflage themselves from predators when they get wet. Close inspection showed that the creatures possess different micro and nanoscale fluid-transporting structures, forming miniscule surface patterns that can drive liquids in a specific direction with the greatest possible efficiency.

By replicating those same organic patterns on steel, titanium and silicon using precision lasers – a process known as biomimicry – the LINABIOFLUID team was able to demonstrate significant improvements in controlled fluid transport. Tests showed that this biomimetic breakthrough reduced the coefficient of friction by 50 % in machine components, such as steel shafts lubricated with engine oil, and could enable the production of much more robust and efficient slide bearings for many mechanical applications.

Faster and more effective lubrication means less friction and resistance, reducing energy use and CO2 emissions, while minimising the wear and tear that shortens the lifespan of machines.

More efficient machinery

‘By working together with biologists and laser experts, the project developed a radical new line of biomimicry technology. The results could be very useful for solving everyday engineering problems that would transform the energy efficiency of millions of machines,’ says project coordinator Emmanuel Stratakis of the Foundation for Research and Technology Hellas in Greece.

The researchers also identified medical uses, including laser-engineered titanium implants with biomimetic surface microstructures wetted by blood and body fluids to prevent overgrowth of tissue and cells. This has the potential to reduce the side effects of hip replacement surgery or enable novel implants to treat cardiovascular disease, a discovery now being explored further in the follow-on FET Innovation Launchpad Project CellFreeImplant.

‘We are also looking at other ways in which these new types of biomimetic and nanoscale structures could be used, for example in underwater applications, in high-power device cooling or to separate water and oil,’ Stratakis says. ‘Furthermore, we are studying the unexpected discovery of anti-reflection properties of bio-inspired laser-induced nanostructures. This finding is being patented and will be investigated further in LABIONICS, a second follow-on FET Innovation Launchpad Project.’

LINABIOFLUID led to eight scientific awards for project members, a total of four patent applications and 43 publications in scientific journals.

PDF Basket

No article selected

Project details

Project acronym
LINABIOFLUID
Project number
665337
Project coordinator: Greece
Project participants:
Austria
Germany
Greece
Spain
Total cost
€ 3 024 827
EU Contribution
€ 3 024 827
Project duration
-

See also

More information about project LINABIOFLUID

All success stories

This story in other languages