Skip to main content
European Commission logo

Genes, brain plasticity & epileptic seizures

Researchers studying one of the major regulatory proteins in the brain are advancing knowledge about the behaviour of certain genes upon epileptic seizures.
Through the EU-funded EpiTarGene project, Dr Katarzyna Kalita, from the Nencki Institute of Experimental Biology in Poland, has identified a group of genes controlled by one of the major regulatory proteins in the brain: the Serum Response Factor (SRF). This could lead to the better understanding of the molecular mechanisms of epilepsy.

This could help us to better understand the process by which our brain changes during the course of our life and may, eventually, lead to a cure for a number of brain disorders, including epilepsy.

For most of the last century, scientists thought that our brain remains relatively unchanged after early childhood. More recent research has shown the opposite: brain plasticity – or neuroplasticity – is now widely accepted to continue throughout our life, as the brain continues to change in both its structure and organisation in response to experiences as well as injuries.

One area where a better understanding of brain plasticity may shed new light is epilepsy, a common brain disorder characterised by repeated seizures.

Regulatory proteins

At the Nencki Institute of Experimental Biology in Poland, Dr Katarzyna Kalita, a Marie Curie International Reintegration grantee, is attempting to identify the genes involved in a state of aberrant (abnormal) plasticity, during epileptic seizures.

‘After identifying genes activated in our experimental model, we have to work out if they play a role in the development of epilepsy,’ she said.

Genes encode proteins that regulate biological activity. Regulatory proteins (‘transcription factors’) have been found to regulate brain processes by influencing the way that genetic information is used. One of the major regulatory proteins in the brain is Serum Response Factor (SRF).

‘After identifying genes activated in our experimental model, we have to work out if they play a role in the development of epilepsy.’  

Dr Katarzyna Kalita, Nencki Institute of Experimental Biology, Poland

Working with PhD students for the EU-backed EpiTarGene project, Dr Kalita has been able, using global genomic screening, to find a group of genes controlled by SRF in response to seizures.

One of the unexpected outcomes so far has been the discovery that many genes are regulated by SRF in response to neuronal plasticity; and also that they are regulated by SRF not during normal brain functioning but only in response to stimulation such as seizures.

Model of the Serum Response Factor (SRF), one of the major regulatory proteins in the brain.
Model of the Serum Response Factor (SRF), one of the major regulatory proteins in the brain.
Model of the Serum Response Factor (SRF), one of the major regulatory proteins in the brain.

‘Now we are working on characterising processes controlled by these genes to understand their role in brain plasticity,’ she explained.

‘When we understand the molecular mechanism underlying aberrant synapses remodelling we might be able to cure epilepsy,’ she said, before adding: ‘but there is a long way to go.’

 

The Career Integration Grant

The Marie Curie Reintegration grants were FP6 instruments, aimed at bringing back ‘home’ researchers from the EU and Associated States who had been conducting part of their career outside of Europe. These actions encouraged European researchers to return to, and establish themselves in, a Member State or an Associated State in order to contribute to European research and to transfer the knowledge they had acquired. Today, the Career Integration Grants (CIG) pursue the same objective, while the access to grants has been widened to any researcher from any country in the world, with at least 4 years’ full-time research experience or a doctoral degree.

More info

Nencki Institute of Experimental Biology

Marie Curie Career Integration Grant

Weekly news alert
The best Horizon stories, delivered to your inbox