Skip to main content
European Commission logo

Frontier Research breakthroughs may not bear fruit until decades later - Prof. Pierre Papon

With the formation of the European Research Council (ERC) in 2007, the EU has given a substantial boost to frontier research. Now we just need to allow it time to produce results, says Professor Pierre Papon, a former director-general of the French National Center for Scientific Research (CNRS).
Papon Pierre

Surely all science is conducted with an open mind. What is it, then, that defines frontier research?

‘Frontier research is science that is related to understanding the laws of nature, without any direct concern about practical applications. Think about the discovery of the double-helix structure of DNA by Francis Crick and James

Watson at Cambridge University, UK, in 1953. Watson and Crick wanted to understand DNA structure; at that time they did not consider any practical applications of their discovery, which instead came several decades later.’ 

Have the EU and its predecessors always been interested in backing frontier research?

‘No. The Treaty of Rome, which established the European Economic Community (EEC) in 1957, didn’t allow for the support of either frontier research or mission-oriented research. It wasn’t until the 1970s, when governments considered that the technological competitiveness of European industry was a matter of concern, that the EEC launched scientific programmes to support technology development.

‘The Framework Programmes have been mission-oriented, although some of them have involved what could be considered frontier research. For example, in the 1990s, when I was in charge of the French Research Institute for Exploitation of the Sea (IFREMER), the Institute was involved in the MAST (Marine Science and Technology) programme which supported research on the interactions between the ocean and the atmosphere. Also don’t forget about the Marie Curie fellowships which were quite extensive. But the turning point for frontier research was the creation of the ERC in 2007.’ 

‘Today we might point to studies of quantum physics, which are leading to the development of new types of computers and new types of information transfer.’

Professor Pierre Papon, physicist, former director-general of the French National Center for Scientific Research (CNRS) and of IFREME

What prompted the establishment of an EU institution like the ERC to fund frontier research? 

‘There were several concerns. First was the health and wellbeing of European science compared with that of the US and Japan, and European scientists had been putting pressure on their governments so that Europe would support frontier research. Second, the mechanism for creating research projects was getting more and more complicated as in general they involved many partners and thus required cumbersome coordination.

‘Finally, you need to bring fresh blood into science by giving young scientists money and a chance to succeed. So that was another idea behind the creation of the ERC: to give chances to scientists in Europe and to bet on new ideas.’ 

What is your favourite example of a recent frontier research success?

‘I mentioned the discovery of the structure of DNA. But with frontier research we must consider that often one only understands 20 or 30 years later that a discovery was a breakthrough. At the time, in 1953, there were very few articles in the press about the discovery. There are other examples: the discovery of nuclear fission, which opened the road to reactors for the generation of electricity; or the application of microwaves to study matter under radiation, which led to the phenomenon of nuclear magnetic resonance which is now a staple of medical imaging.

‘Today, we might point to studies of quantum information, which may lead to the development of new types of computers and new methods for information transfer. Frontier research is a long-term investment and you have to always be patient.’ 

Weekly news alert
The best Horizon stories, delivered to your inbox

Recommended for you

The EU is working to make results from international scientific projects more comparable. © Sergei Dvornikov, Shutterstock.com
More international attention is being paid to the importance of common standards for performing scientific experiments and measuring their results – a field called metrology.