Skip to main content
European Commission logo

Microorganisms to clean up environmental methane

Methane has a global warming impact 25 times higher than that of carbon dioxide and is the world's second most emitted greenhouse gas. An EU-funded project is developing new strains of microorganisms that can transform methane into useful and bio-friendly materials.

© vchalup #188138761, source: stock.adobe.com 2019

PDF Basket

No article selected

Methanotrophs are microorganisms that metabolise methane. They are a subject of great interest in the environmental sector, where the emission of harmful greenhouse gases is a major concern.

The EU-funded CH4BIOVAL project is working to develop new methanotroph strains that can more readily transform methane from the atmosphere into valuable user products. The CH4BIOVAL team is particularly interested in the potential of methanotrophs to produce large amounts of bio-polymers known as polyhydroxyalkanoates (PHAs).

PHAs include a wide range of materials with different physical properties. Some of them are biodegradable and can be used in the production of bioplastics. The mechanical properties and biocompatibility of PHAs can be changed by modifying their surfaces or by combining them with other polymers, enzymes and inorganic materials. This makes possible an even wider range of applications.

CH4BIOVAL researchers are also interested in another methanotroph by-product called ectoine. This is a natural compound produced by several species of bacteria. It is what’s known as a compatible solute, which can be useful as a protective substance. For example, ectoine is used as an active ingredient in skincare and sun protection products, stabilising proteins and other cellular structures and protecting the skin from dryness and UV radiation.

The CH4BIOVAL project is undertaking the isolation of useful methanotroph strains through conventional genetic selective techniques as well as state-of-the-art bioinformatic techniques. The latter involve the detailed analysis and modification of complex biological features based on an in-depth understanding of the genetic codes of selected strains.

By closely studying the metabolic characteristics of specific methanotroph strains, CH4BIOVAL scientists are identifying key genetic modifications that can improve their performance. Thus, the project is enabling both the abatement of an important greenhouse gas and the production of useful bio-consumables.

The project received funding from the EU’s Marie Skłodowska Curie Actions programme.

PDF Basket

No article selected

Project details

Project acronym
CH4BIOVAL
Project number
750126
Project coordinator: Spain
Project participants:
Spain
Total cost
€ 170 121
EU Contribution
€ 170 121
Project duration
-

See also

More information about project CH4BIOVAL

All success stories

This story in other languages