PDF Basket
The three-year EU-funded BIONIC AIRCRAFT project, which was launched in September 2016, aims to introduce additive layer manufacturing (ALM) technologies to aircraft design and production. The aviation sector has identified this technique as having great potential to reduce the amount of raw material required from the outset. Weight reductions achieved by developing ultralight materials will also help to reduce emissions during flight.
ALM is a resource- and time-efficient industrial process that applies material, layer by layer, to create 3D parts. “This manufacturing process opens the door to the design of new ultra-lightweight structures and the flexible and resource-efficient production of highly complex and low-volume parts,” says project coordinator Philipp Imgrund from the Fraunhofer Institute in Germany. “It can also be used for repair and spare-part production, helping to reduce cost further.”
Next-generation aircraft
The global aviation sector must balance growing concerns over its environmental impact with ever-expanding demand for services. One way to achieve this could be to find new ways of cutting emissions during all phases of an aircraft’s life cycle. This will require the implementation of innovative new green technologies and ways of working, currently being pioneered by the BIONIC AIRCRAFT project.
Components used in aviation generally need to be lightweight and not very large, which means that the ALM concept is very interesting in terms of reducing costs and lead time. For example, if the manufacturer has to start production with a big block of metal, sometimes up to 90 % of the material must be removed to produce the required part.
In contrast, using the ALM system, pioneered by the BIONICAIRCRAFT project, only requires the volume of metallic powder needed to build up the object with just a residual amount of material having to be removed through subsequent machining.
Identifying efficiencies
Although just halfway through, the project has already achieved a number of objectives: Within the first year, a new process was developed for the production of an alloy powder which is gradually added during ALM manufacturing to build up high-strength aluminium alloys. “The lightweight potential of these aluminium alloys will be further explored going forward,” says Imgrund.
The project has also worked on improving efficiencies during manufacturing by reducing the number of defective parts. This is being achieved by implementing advanced in-line quality assurance systems throughout the process. A test rig for conducting experiments has been built and is now ready for use. “Overall, our expectations of reducing ALM processing costs by 25 % and increasing ALM productivity by 30 % remain reachable based on current progress,” Imgrund notes.
Another innovative aspect has been the project’s focus on bionic approaches, taking inspiration from nature (such as bird skeletons) to achieve design efficiencies. “Bionic support structures, which are designed to be easily removed, will also contribute to resource efficiency in aircraft manufacturing,” says Imgrund. “Also, new lightweight designed structural components made from novel aluminium alloys will contribute to reducing CO2 and NOx emissions during operation.”
Investigation into possible repair methods for ALM-made parts has begun. The project is considering the best way of achieving more resource-efficient supply chains, too, and an initial analysis of lead times for current spare-part supplies suggests a potential time saving of up to 70 %.
By addressing efficiencies throughout the manufacturing process – from design to reuse and repair – the BIONIC AIRCRAFT project aims to ensure that the aviation sector can meet the growing demands of the 21st century.