Skip to main content
Research and Innovation

Remote control of transplanted cells in Parkinson's

© vegefox.com #140962069, 2019 source:stock.adobe.com
© vegefox.com #140962069, 2019 source:stock.adobe.com

Cell-replacement therapies, including stem cell transplant, give hope to patients suffering from neurodegenerative diseases such as Parkinson's. An EU-funded project aims to improve the outcome of such therapies, using magnetic manipulation of cells at the site of transplantation.

PDF Basket

No article selected

Neurodegenerative conditions such as Parkinson’s disease are a major public health issue, especially given the ageing population in Europe and beyond. Parkinson’s now affects more than 1 900 people per 100 000 among those aged 80 and older.

While a permanent cure for Parkinson’s and similar neurological diseases is not yet in sight, cell-replacement therapies (CTs) are considered very promising, particularly with the advent of specialised stem-cell technologies. Human stem cells come from a variety of sources and have the potential to become different cell types, including healthy nerve cells.

A fundamental challenge for CTs remains the inability of doctors to control the behaviour of transplanted cells, particularly cell differentiation and directional growth. The aim of the EU-funded MAGNEURON project is to develop a new technique enabling the remote control of these and other cellular functions by means of magnetic manipulation.

The new technique involves the integration of tiny magnetic nanoparticles (MNPs) into proteins that affect cellular activity. These so-called bio-functionalised MNPs (bMNPs) are delivered into target cells which are then implanted into the patient's brain. There they can be manipulated in a controlled manner by the external application of magnetic fields.

The MAGNEURON project consortium is putting into practice cutting-edge knowledge in the highly specialised area of bMNP engineering, towards the control of neuronal cell programming and fibre outgrowth. Project researchers include renowned European experts in regenerative medicine and nanomedicine.

The result of the project is an important breakthrough – a novel, versatile technique for the remote control of intracellular functions. Its successful implementation greatly advances the therapeutic potential of cell-replacement procedures for neurodegenerative conditions such as Parkinson’s, promising to help many, many people in Europe and around the world.

PDF Basket

No article selected

Project details

Project acronym
MAGNEURON
Project number
686841
Project coordinator: France
Project participants:
France
Germany
United Kingdom
Total cost
€ 3 473 026
EU Contribution
€ 3 473 026
Project duration
-

See also

More information about project MAGNEURON

All success stories

This story in other languages