BIOMEDICAL CATALYST EVALUATION

USING REGRESSION DISCONTINUITY DESIGN TO ASSESS THE EFFECTS OF

SUBSIDIES FOR RESEARCH AND DEVELOPMENT

Chris Hale, Ipsos MORI

INTRODUCTION

BIOMEDICAL CATALYST

- Delivered by Innovate UK and the Medical Research Council since 2012
- £180m of grants for R&D and translational research in the biomedical sector awarded over 8 competition rounds
- No thematic priorities diverse project portfolio
- High share focused on developing new drugs for the treatment of cancer, though many focused on medical devices or digital health
- Around two-thirds of projects led by SMEs (remainder by academic institutions)

EVALUATION

- Mixed-methods study with process and impact evaluation objectives
- Took place in 2014/15 covering 255 projects funded
- Evidence on results gathered through a survey of successful and unsuccessful applicants
- Longer term follow-up is currently underway

IMPACT EVALUATION METHODS

 Exploit a very common process used to allocate R&D funding - highly transferable evaluations of other programmes

CORE FRAMEWORK FOR UNDERSTANDING IMPACT

KEY ISSUES

DEVELOPING A COUNTERFACTUAL

- Assessment of impact requires comparisons with an equivalent group of firms (or academic teams) that did not receive the grant
- Applicants for R&D subsidies likely to differ to those to do not apply in important ways:
 - Less innovation active?
 - More able to self-fund R&D?
- If so comparison group of non-applicants could lead to a biased result

POSSIBLE OPTIONS

- Issues mitigated by focusing on unsuccessful applicants for R&D subsidies
- Can be assumed to share similar characteristics motivating their applications for funding
- But leaves residual problems:
 - Successful applicants chosen on scientific and economic merits
 - Features also likely determine long run commercial success
 - Simple comparisons likely to **overstate impact** of grants

4

Further improvement needed for robust findings

REGRESSION DISCONTINUITY DESIGN

MOTIVATION

- Applicants were chosen using a familiar process a blind, scored assessment of the qualities of their applications
- Successful and unsuccessful applicants may differ in general terms – but around the lowest successful score, differences may be random
- Comparing those that just made it to those that just missed out can yield highly robust results

ILLUSTRATION

APPLICATION SCORE

REGRESSION DISCONTINUITY DESIGN

ISSUES TO CONSIDER

- Not valid if some applicants can influence their success outside of the scoring process – e.g. political interference
- Should not need to worry about properties of projects or applicants – but problems arise if characteristics are subject to sudden changes at the scoring threshold
- Results are not generalizable they describe the effect of subsidy on the marginal applicant or project
- Not appropriate for driving cost-benefit analysis
- Better with larger sample sizes

MODELLING CHALLENGES

APPLICATION SCORE

KEY FINDINGS

SIGNIFICANT EFFECTS AT PROJECT LEVEL

- Increase in spending on the project being taken forward with the grant or subsidy
- Acceleration of the project through the development pathway – as measured using the TRL scale

PROJECT SPENDING

KEY FINDINGS

NO EFFECT ON R&D AT LEVEL OF FIRM

- No effects on total R&D spending or employment of R&D workers
- Multi-asset firms grants appeared to shift focus of attention rather than lead to increase in overall activity
- Possible that grants allow firms to focus on higher risk projects – leading to lower risk projects being shelved
- Issue of 'virtual' companies

R&D EMPLOYMENT

8

TIME DISTRIBUTION OF EFFECTS

FINDINGS FROM OTHER STUDIES

- Findings may be misleading owing to short time frame for analysis
- Later study examining grants for agricultural biotechnology show grants do lead to greater R&D – which grows over time
- Explainable by time needed to deal with contractual aspects and recruit additional personnel
- Non-linearities also evident in the longer term projects generate new ideas and firms expand their overall R&D project portfolio

TIME PROFILE OF IMPACT

NEXT STEPS

FINAL EVALUATION UNDERWAY

- Follow-up research being completed will give up to six years of data on progress
- More significant role for administrative data:
 - Business Structure Database
 - Company Account filings
 - Patent records
 - Clinical trials

MAJOR OUTSTANDING ISSUES

Cost-benefit analysis:

- Conventional measures of economic benefit (i.e. productivity gains) not useful firms not
 expected to generate sales / output
- Alternative way of understanding economic benefit is required
- Possible solution in examining changes in firm valuations represent expectations of future abnormal profits
- But issue of **illiquidity** of VC investments values may not always be observed
- Other ideas?