[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/9799\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003ERehabilitating spinal cord injury and stroke with graphene and gaming\u003C\/h2\u003E\u003Cp\u003EFew human injuries are as catastrophic as those to the spine. An accident, disease or act of violence affecting the spine can result in poor function \u2013 even paralysis \u2013 almost anywhere in the body.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EThe spinal column is enormously complex, with limited capacity for regeneration and any health implications are usually long-term and chronic.\u003C\/p\u003E\u003Cp\u003EWhile there is no known way to repair a spinal cord injury (SCI), scientists may be on the cusp of some important breakthroughs. New approaches are being taken to reverse the nerve damage, with some researchers attempting to reshape the architecture of the spinal cord using materials engineered in the laboratory.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EProf Paula Marques, material scientist at the University of Aveiro in Portugal and her colleagues, are seeking to mould a particular biomaterial into a scaffold that can replace damaged spinal tissue. This will create a working bridge over an injured area giving the brain an alternative pathway to communicate with the body.\u003C\/p\u003E\u003Cp\u003EThe hope is that, within the next decade, these biomaterials will result in radical new treatments for the 250-500 000 people who suffer a spinal cord injury around the world every year.\u003C\/p\u003E\u003Cp\u003E\u2018Even a small improvement in treatment can lead to a big change to quality of life,\u2019 said Prof Marques.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ENerve regeneration\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EIn addition, the scaffold implant would support the regeneration of natural nerve cells, enabling the body eventually to resume its natural function unassisted.\u003C\/p\u003E\u003Cp\u003EProf Marques is the principal researcher of \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/829060\u0022\u003Ethe NeuroStimSpinal project\u003C\/a\u003E, an EIC Pathfinder project under Horizon 2020 focusing on graphene-based material combined with a protein-rich material derived from humans known as a \u0027decellularised extracellular matrix\u0027. In the human body, an extracellular matrix provides the structure and support to living cells.\u003C\/p\u003E\u003Cp\u003EThis blend of matrix and graphene-based material creates a 3D structure that skilfully mimics the morphology of the native spinal cord. It will form the backbone \u2013 as it were \u2013 of the project\u2019s implant. \u0026nbsp;\u003C\/p\u003E\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003EEven a small improvement in treatment can lead to a big change to quality of life\r\n\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EProfessor Paula Marques, NeuroStimSpinal\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003EGraphene (a sheet of carbon atoms) shows excellent electrical properties, meaning a current can run along it \u2013 a prerequisite for any material that might be employed to send electrical impulses along the spinal cord.\u003C\/p\u003E\u003Cp\u003EImportantly, the scaffold is porous, meaning cells and spinal fluids can pass through it. It\u2019s also biocompatible, preventing rejection by the body, and biodegradable, allowing it to be programmed to degrade over time.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ERestoring function\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EProf Marques describes her work as \u2018disruptive\u2019 and says the potential prize of restoring function to people with paralysis is huge.\u003C\/p\u003E\u003Cp\u003E\u2018I see real hope,\u2019 she said. \u2018My only frustration is that we can\u2019t move forward faster with this research \u2013 spinal cord injury has such a big impact on human life.\u2019\u003C\/p\u003E\u003Cp\u003EThere are two main types of cells in nerve tissue: neurons, which transmit electrical impulses, and glial cells, which are non-conductive and provide a support system for the neurons.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EIn lab experiments, the \u003Ca href=\u0022https:\/\/www.neurostimspinal.eu\/project\u0022\u003ENeuroStimSpinal team\u003C\/a\u003E \u2013 which includes experts in material science, electronic engineering, physics and biology \u2013 have found that when their scaffold is seeded with embryonic neural progenitor cells (cells that renew themselves and have the potential to develop into either neuronal or glial cells) and an electrical stimulus is applied, the \u2018blank\u2019 stem cells successfully differentiate into a mixture of the two cell types.\u003C\/p\u003E\u003Cp\u003E\u2018This is very encouraging,\u2019 said Prof Marques. \u2018It shows that the scaffold can provide a good environment for nerve cell regrowth.\u2019\u003C\/p\u003E\u003Cp\u003EHer group is one of just a handful around the world that has managed to make neural stem cells develop into new cell lineages in lab conditions.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EHowever, to date, no such success has been achieved in live animals. Prof Marques wants her next round of experiments to set SCI research on a new course.\u003C\/p\u003E\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003EMy only frustration is that we can\u2019t move forward faster with this research \u2013 spinal cord injury has such a big impact on human life\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EProfessor Paula Marques, NeuroStimSpinal\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003EIn the months ahead, her team will transplant miniature versions of their scaffold into rats. An electric current will be applied to the implant through a control unit inserted under the animals\u2019 skin to accelerate tissue regrowth. If these experiments show regeneration of the animals\u2019 spinal cord is possible with the scaffold in place, Prof Marques will apply for fresh funding to take her work to the next level.\u003C\/p\u003E\u003Cp\u003E\u2018I hope we can contribute with our scientific knowledge to take a step forward towards SCI repair,\u2019 she said.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ECatastrophic stroke\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EA stroke is another catastrophic life event that can result in damage to the nervous system. Strokes, besides being the number two cause of death worldwide, are the third-leading cause of disability-adjusted life years (DALY), a metric used \u003Ca href=\u0022https:\/\/www.who.int\/data\/gho\/indicator-metadata-registry\/imr-details\/158\u0022\u003Eto assess the burden of death and disease\u003C\/a\u003E.\u003C\/p\u003E\u003Cp\u003EScientists have yet to find a way to replace the dead brain cells that result from a clot blocking the flow of blood and oxygen to the brain, but they are starting to exploit the latest technology \u2013 such as advances in virtual reality (VR) \u2013 to help patients recover from some of the long-term consequences.\u003C\/p\u003E\u003Cp\u003EAfter a stroke, hands can become stiff due to disrupted connections between the brain and the hand muscles. This \u201cspasticity\u201d can make it hard, almost impossible, to straighten fingers or grasp an item.\u003C\/p\u003E\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003EWe envisage our solution being used by patients at home. It would be complementary to traditional rehab techniques\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EDr Joseph Galea, ImpHandRehab\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003E\u2018These hand impairments can severely impact daily life,\u2019 said Dr Joseph Galea, a researcher in motor neuroscience at the University of Birmingham in the UK.\u003C\/p\u003E\u003Cp\u003E\u2018Though there\u2019s been a lot of focus on improving large, reaching-arm movements after a stroke, there\u2019s been little work on improving hand functionality.\u2019\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EDr Galea wants to improve hand-movement recovery through \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/872082\u0022\u003Ethe ImpHandRehab project\u003C\/a\u003E. With funding from the European Research Council, this project asks stroke patients to perform tasks involving increasingly complex hand movements \u2013 a form of rehabilitation that will ultimately improve dexterity and quality of life. Users perform their tasks wearing a VR headset paired with affordable, off-the-shelf motion-capture gloves.\u003C\/p\u003E\u003Cp\u003EWhat motivates users to stick to their tasks?\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EImmersive VR\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003E\u2018Gaming,\u2019 explained Dr Galea. \u2018We\u2019ve developed two really immersive VR games that reward people for doing better and better at something like popping a balloon or controlling a submarine. We\u2019ve noticed that the more points or coins are at stake, the harder a person will try and the better they\u2019ll perform.\u2019\u003Cbr\u003E\u0026nbsp;\u003Cbr\u003EBest of all, he and his colleagues have found that after a game has been played for a prolonged period of time, the improved hand performance persists even when the VR headset is removed.\u003C\/p\u003E\u003Cp\u003E\u2018We envisage our solution being used by patients at home,\u2019 said Dr Galea.\u003C\/p\u003E\u003Cp\u003E\u2018It would be complementary to traditional rehab techniques.\u2019\u0026nbsp;\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EWatch the animation\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003E\u003Cfigure role=\u0022group\u0022\u003E\n\u003Cimg alt=\u0022Demonstration of VR training for stroke treatments. \u00a9 Joseph Galea\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002238afc1b6-0ca6-41af-8b48-ad52cfdeda4d\u0022 src=\u0022\/sites\/default\/files\/hm\/IMCEUpload\/opti-VR-treatment-anim.gif\u0022\u003E\n\u003Cfigcaption class=\u0022tw-italic tw-mb-4\u0022\u003EDemonstration of VR training for stroke treatments. \u00a9 Joseph Galea\u003C\/figcaption\u003E\n\u003C\/figure\u003E\n\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003E\u003Cem\u003EResearch in this article was funded via the EU\u0027s European Research Council. If you liked this article, please consider sharing it on social media.\u003C\/em\u003E\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-d8znglldoicuysctccg27sx-sfhpqjrzapwh8pj3vcg\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-D8zNglLDOICuysCTccG27Sx-SFHPQjrZAPWH8Pj3vCg\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]