[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/9017\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003ESmaller than a grain of sand, phytoplankton are key to aquatic health\u003C\/h2\u003E\u003Cp\u003E\u0026nbsp;\u003C\/p\u003E\n\n\u003Cp\u003ECup sea water in your hands and you will be holding a bustling world of single-cell organisms \u2013 thousands of them.\u003C\/p\u003E\n\n\u003Cp\u003EMuch like creatures of an undersea metropolis, microscopic photosynthetic microbes \u2013 phytoplankton \u2013 quietly float through the ocean, enhancing water quality. As the foundation for the ocean ecosystem, phytoplankton work tirelessly to fuel marine food webs and consume large amounts of carbon dioxide on scales equivalent to forests. But this is not all they can do! These tiny plants may turn organic contaminants into less toxic chemicals.\u003C\/p\u003E\n\n\u003Cp\u003ESounds simple, but it\u2019s not. The processes involved remain elusive.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cstrong\u003ESynthetic chemicals in the environment\u003C\/strong\u003E\u003C\/p\u003E\n\n\u003Cp\u003EWater pollution, once an invisible, silent threat, is now a top environmental concern worldwide.\u003C\/p\u003E\n\n\u003Cp\u003E\u2018Millions of tonnes of synthetic organic chemicals are used for industrial, agricultural and consumers\u2019 purposes annually. These compounds partially find their way to the aquatic environment, impairing water quality and undermining aquatic life,\u2019 said Giulia Cheloni, an environmental scientist studying phytoplankton\u2019s responses to carbon-based contaminants.\u003C\/p\u003E\n\n\u003Cp\u003EThese pollutants are described as contaminants of emerging concern because of their potential risk to human health and ecological impacts. They can be found in personal care products like fragrances, disinfectants and sunscreen agents, as well as household items such as solvents, fabric protectors and flame retardants.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cstrong\u003ECan powerful phytoplankton clean up contaminants?\u003C\/strong\u003E\u003C\/p\u003E\n\n\u003Cp\u003EScientists are studying how organic contaminants affect phytoplankton.\u003C\/p\u003E\n\n\u003Cp\u003E\u2018Phytoplankton are not defenceless against chemical pollution: when exposed to contaminants, they may activate cellular responses to reduce their toxicity,\u2019 said Cheloni, who is conducting research under \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/101030396\u0022\u003EPHYCOCYP\u003C\/a\u003E, a project undertaken with the support of the \u003Ca href=\u0022https:\/\/ec.europa.eu\/research\/mariecurieactions\/node_en\u0022\u003EMarie Sk\u0142odowska-Curie Actions programme\u003C\/a\u003E.\u003C\/p\u003E\n\n\u003Cp\u003EThis process is called biotransformation. Xenobiotic molecules, namely molecules that are not naturally produced within the organisms, such as pesticides, could be metabolised by phytoplanktonic cells. The latter activate specific enzymes that cause contaminants to become less toxic and more easily eliminated from the organism.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003EPhytoplankton are not defenceless against chemical pollution: when exposed to contaminants, they may activate cellular responses to reduce their toxicity.\r\n\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EGiulia Cheloni, project coordinator of PHYCOCYP\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\n\n\u003Cp\u003EUntil now, exactly how this happens has remained elusive. \u2018The aim of PHYCOCYP is to further mechanistic understanding of the biotransformation processes in phytoplankton and investigate how they affect their tolerance to organic contaminants,\u2019 noted Cheloni.\u003C\/p\u003E\n\n\u003Cp\u003EDissecting the biotransformation pathways will boost scientists\u2019 understanding about which enzymes are activated in the process and what kind of chemicals they may transform.\u003C\/p\u003E\n\n\u003Cp\u003EThis information is vital to understanding exactly how phytoplankton transforms different classes of organic contaminants in natural environments.\u003C\/p\u003E\n\n\u003Cp\u003E\u2018The ability to transform organic contaminants into safer products renders phytoplankton a promising candidate in water treatment plants,\u2019 added Cheloni.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cstrong\u003EPreparing the ground for CYP\u003C\/strong\u003E\u003C\/p\u003E\n\n\u003Cp\u003ETo better understand this process, PHYCOCYP will probe how a family of enzymes called \u003Ca href=\u0022https:\/\/www.sciencedirect.com\/topics\/earth-and-planetary-sciences\/cytochrome\u0022\u003ECytochrome P450\u003C\/a\u003E (CYP) affects the phytoplankton\u2019s ability to transform organic contaminants. Found in all kingdoms of life including animals, plants, bacteria and even in a few viruses, CYPs play a prominent role in stress responses and xenobiotic degradation.\u003C\/p\u003E\n\n\u003Cp\u003EHowever, our knowledge of how CYPs act in phytoplankton lags far behind that of other organisms. This is why researchers will build on earlier genetic advances into phytoplankton and apply a genome editing approach to generate mutant species without active CYPs.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003EThe ability to transform organic contaminants into safer products renders phytoplankton a promising candidate in water treatment plants.\r\n\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EGiulia Cheloni, project coordinator of PHYCOCYP\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\n\n\u003Cp\u003E\u2018In a first, our study engages a unique genome editing tool called \u003Ca href=\u0022https:\/\/www.yourgenome.org\/facts\/what-is-crispr-cas9\u0022\u003ECRISPR-Cas9\u003C\/a\u003E in phytoplankton for environmental toxicology research,\u2019 said Cheloni. This technology enables researchers to edit genome parts by removing, adding or altering sections of the DNA sequence.\u003C\/p\u003E\n\n\u003Cp\u003EThese mutants will then be exposed to organic contaminants to figure out the role of CYPs in stress response and organic contaminant tolerance.\u003C\/p\u003E\n\n\u003Cp\u003EResearchers will use a comparative approach to investigate the ability of phytoplankton to transform organic contaminants and the role of CYPs in this biotransformation process.\u003C\/p\u003E\n\n\u003Cp\u003E\u2018Our metabolomics approach will enable us to conduct a comparative analysis between wild-type and mutant phenotypes. Such a comparative approach to exploring biotransformation pathways has never been applied before,\u2019 highlighted Cheloni.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cstrong\u003EFar-reaching implications\u003C\/strong\u003E\u003Cbr \/\u003E\n\u0026nbsp;\u003Cbr \/\u003E\nOver the last few years, environmental toxicology studies have mainly focused on how contaminants affect organisms (the biota), but not the opposite. PHYCOCYP findings will shed further insight on how the biotransformation processes of microorganisms may affect the contaminants\u2019 fate and persistence in the ecosystems.\u003C\/p\u003E\n\n\u003Cp\u003EIn the realm of environmental biotechnology, identifying enzymes involved in key steps of contaminant degradation is particularly important for wastewater treatment. Such enzymes could greatly aid in selecting natural strains that can more efficiently transform organic contaminants or help generate synthetic strains that can transform persistent contaminants.\u003C\/p\u003E\n\n\u003Cp\u003E\u2018\u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/101030396\u0022\u003EPHYCOCYP\u003C\/a\u003E is a collaborative and interdisciplinary project that will bring together the expertise of three French laboratories specialised in the fields of marine microbial ecology (MARBEC), aquatic analytical chemistry (HydroSciences Montpellier), phytoplankton physiology and cell biology (UMR7141),\u2019 said Cheloni.\u003C\/p\u003E\n\n\u003Cp\u003E\u003Cstrong\u003EAdvanced materials to the rescue\u003C\/strong\u003E\u003C\/p\u003E\n\n\u003Cp\u003EWhile the water treatment role of tiny phytoplankton is being further explored, scientists are also studying another important ally in the fight against ocean pollution: advanced materials and processes. \u0026nbsp;\u003C\/p\u003E\n\n\u003Cp\u003EUndertaken with the support of the Marie Sk\u0142odowska-Curie programme, \u003Ca href=\u0022http:\/\/www.mat4treat.unito.it\/\u0022\u003EMAT4TREAT\u003C\/a\u003E developed advanced materials and processes to protect natural waters from contaminants of emerging concern (CECs) like pharmaceutical active compounds and other chemicals, as well as antibiotic resistant bacteria and viruses, due to their potential impact on public health.\u003C\/p\u003E\n\n\u003Cp\u003EThe novelty here is the integration of the three advanced water treatment technologies: adsorption, membranes and photo or thermal catalysis.\u003C\/p\u003E\n\n\u003Cp\u003EIn the first two approaches, the pollutants are trapped by high-surface-area materials or are separated by sieves that allow only the passage of clean water.\u003C\/p\u003E\n\n\u003Cp\u003EIn photo and thermal catalysis, sunlight and heat trigger the formation of chemical species that convert the pollutants in less harmful products \u2013 carbon dioxide and water in the best-case scenario, explains Giuliana Magnacca associate professor of Physical Chemistry at the Department of Chemistry, University of Torino.\u003C\/p\u003E\n\n\u003Cp\u003EFrom putting tiny organisms to work to the development of advanced materials, the goal of the research is one and the same: to enable better, cleaner and more sustainable use of water that is crucial for all critical societal functions. This is also in line with the EU\u2019s target of having 100% of the EU\u2019s freshwater ecosystems in good health by 2027, up from 40% currently.\u003Cbr \/\u003E\n\u0026nbsp;\u003C\/p\u003E\n\n\u003Cp\u003E\u0026nbsp;\u003C\/p\u003E\n\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-5clwtjitosgtlo-8imh4gqfxbafrmqnp0xedlxmg2qw\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-5cLwtjITOSgtLO-8imH4gQFxbafrMqnp0XeDlxMg2qw\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]