[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/7230\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003E\u2018Microscope on a chip\u2019 could bring medical expertise to distant patients\u003C\/h2\u003E\u003Cp\u003EFalling ill in a remote part of the world can mean difficulty in finding the right care. Even where medical help may be available, it may be impossible to get a definitive diagnosis because of a lack of specialist expertise and laboratory equipment, such as microscopes.\u003C\/p\u003E\u003Cp\u003EAdvanced miniaturisation means patients could benefit from a \u2018microscope on a chip\u2019, according to \u003Ca href=\u0022https:\/\/webgrec.ub.edu\/webpages\/000004\/ang\/angel.dieguez.ub.edu.html\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EDr Angel Dieguez\u003C\/a\u003E, senior lecturer in the Department of Electronics and Biomedical Engineering at the University of Barcelona, Spain.\u003C\/p\u003E\u003Cp\u003EHe runs a project called \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/737089\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EChipScope\u003C\/a\u003E, which uses some of the smallest light sources ever manufactured to push the limits of conventional optics, in a device potentially compact enough to fit in a pocket.\u003C\/p\u003E\u003Cp\u003E\u2018It may be possible for a modified mobile phone to have images of the nano-world,\u2019 Dr Dieguez said.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EShadow images\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EChipScope\u2019s prototype illuminates a tissue sample using an array of minute light emitting diodes (LEDs) \u2013 among the smallest ever manufactured \u2013 to create shadow images of the specimen. These images are then captured using a detector sensitive enough to detect single photons and processed to produce a complete picture.\u003C\/p\u003E\u003Cp\u003EThrough very precise control of these LEDs, which are about 1,000 times smaller than the diameter of a human hair, the ChipScope imaging system has a spatial resolution of just below 200 nanometres \u2013 which is the usual limit with visible light.\u003C\/p\u003E\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022@alignleft@\u0022\u003E\n\u003Cimg alt=\u0022ChipScope\u2019s microscope works by using some of the smallest light emitting diodes ever manufactured to create shadow images of the specimen. Image credit - TU Braunschweig\u0022 height=\u0022689\u0022 src=\u0022\/research-and-innovation\/sites\/default\/files\/hm\/IMCEUpload\/img_1.png\u0022 title=\u0022ChipScope\u2019s microscope works by using some of the smallest light emitting diodes ever manufactured to create shadow images of the specimen. Image credit - TU Braunschweig\u0022 width=\u0022973\u0022\u003E\n\u003Cfigcaption class=\u0022tw-italic tw-mb-4\u0022\u003EChipScope\u2019s microscope works by using some of the smallest light emitting diodes ever manufactured to create shadow images of the specimen. Image credit - TU Braunschweig\u003C\/figcaption\u003E\n\u003C\/figure\u003E\n\u003C\/p\u003E\u003Cp\u003E\u2018(By) triggering these tiny LEDs individually, and in sequence, we can add together the shadow images to build up a picture of the sample,\u2019 Dr Dieguez said.\u003C\/p\u003E\u003Cp\u003EGiven the practicalities of positioning tissue specimens or bacteria on such a tiny detector, ChipScope is working on a small analysis tool to position the sample between the LEDs and the sensor.\u003C\/p\u003E\u003Cp\u003EThe mechanism under development uses a minute amount of liquid and high-precision pumps to manipulate the sample through channels in a plastic slide and into the field of view, which is about 10 microns \u2013 just under the size of an average human cell.\u003C\/p\u003E\u003Cp\u003EThe microscope could also be used to identify and study pathogens, such as tuberculosis bacteria in a patient\u2019s sputum.\u003C\/p\u003E\u003Cp\u003EBut outside the mobile medical field, ChipScope could play a role in environmental monitoring, such as in assessing water quality or examining particulate matter in polluted air, Dr Dieguez says.\u003C\/p\u003E\u003Cp\u003EIt could readily provide images of airborne nanoparticles, including those smaller than 2.5 microns, considered the most dangerous to human health.\u003C\/p\u003E\u003Cp\u003EDr Dieguez estimates the microscope and control electronics cost less than \u20ac1,000 for the prototype being developed, and that further development and economies of scale could bring this down to as little as \u20ac10 or so.\u003C\/p\u003E\u003Cp\u003EWhile ChipScope shrinks the light sources and captures a specimen\u2019s shadows, another novel system, \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/id\/822227\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003Edeveloped by Grundium of Finland\u003C\/a\u003E, uses repeat scans with coloured light to assemble a digital picture that can then be analysed by a specialist or intelligent diagnostic software.\u003C\/p\u003E\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u2018Anybody who can prepare a slide can use the technology.\u2019\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EMika Kuisma, CEO, Grundium\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ERed, green and blue\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EThe \u003Ca href=\u0022https:\/\/www.grundium.com\/\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EGrundium\u003C\/a\u003E digital scanning microscope makes high resolution scans of a tissue sample \u2013 done separately in red, green and blue light \u2013 which can then be combined to analyse samples at different layers, as well as maximise the resolution and level of detail.\u003C\/p\u003E\u003Cp\u003EThe digital images can be displayed on any device with an internet connection and a web browser, for analysis onsite or shared online to be studied anywhere in the world. The system produces images in a range of digital formats compatible with sophisticated diagnostics applications that can recognise patterns of infection or signatures of disease, such as cancer, which can sometimes be missed by even the best-trained human eye.\u003C\/p\u003E\u003Cp\u003EIntelligent diagnostics is a major growth area in digital medicine, given a global shortage of pathologists and the increased need for tissue analysis \u2013 as demonstrated by the explosion in demand for such expertise in the global Covid-19 pandemic.\u003C\/p\u003E\u003Cp\u003EGrundium\u2019s approach is to develop and combine hardware, optics and software to work together, chief executive Mika Kuisma said, rather than adapting a conventional, analogue system to the digital world.\u003C\/p\u003E\u003Cp\u003EHe estimates only about 20% of potential users such as pathology laboratories and small- or medium-sized clinics have access to digital scanning tools, and that bringing down the costs and size of the equipment can open the door wider to digital pathology.\u003C\/p\u003E\u003Cp\u003E\u2018We are trying to democratise the access to professional diagnostics services,\u2019 said Kuisma, an engineer formerly at mobile telecommunications company Nokia.\u003C\/p\u003E\u003Cp\u003E\u2018The potential is enormous,\u2019 he added, noting that the company sees a market of about 10,000 small- and medium-sized clinics or pathology laboratories just in Europe and North America and a global market of about \u20ac5 billion by 2023.\u003C\/p\u003E\u003Cp\u003EOnce the samples have been scanned and their images saved and stored, all the necessary information is available for diagnosis, with no need to preserve or transport the original sample to a distant laboratory.\u003C\/p\u003E\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022@alignleft@\u0022\u003E\n\u003Cimg alt=\u0022Grundium\u2019s microscope produces digital images that can be analysed onsite or shared online to be studied anywhere in the world. Image credit - Mikko Malmivaara, Grundium Ltd\u0022 height=\u0022667\u0022 src=\u0022\/research-and-innovation\/sites\/default\/files\/hm\/IMCEUpload\/grundium-279-edit-2-sm.jpg\u0022 title=\u0022Grundium\u2019s microscope produces digital images that can be analysed onsite or shared online to be studied anywhere in the world. Image credit - Mikko Malmivaara, Grundium Ltd\u0022 width=\u00221000\u0022\u003E\n\u003Cfigcaption class=\u0022tw-italic tw-mb-4\u0022\u003EGrundium\u2019s microscope produces digital images that can be analysed onsite or shared online to be studied anywhere in the world. Image credit - Mikko Malmivaara, Grundium Ltd\u003C\/figcaption\u003E\n\u003C\/figure\u003E\n\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EKenya\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EIn a pilot of this approach, Grundium has worked with a clinic in rural Kenya since 2018 to diagnose cervical cancer. Clinic staff use the microscope to scan tissue samples and the images are then shared online to be instantly available for examination by a pathologist in Helsinki, Finland. By working with local health authorities, Kuisma believes the results will help patients get better treatment.\u003C\/p\u003E\u003Cp\u003EGrundium\u2019s products are on the market for about \u20ac15,000, but Kuisma sees this coming down with economies of scale and expects to offer a product for less than \u20ac10,000 in the next few years. That compares with existing systems that can cost 20 times as much.\u003C\/p\u003E\u003Cp\u003EWhile that may still be out of reach for smaller clinics in developing countries, Grundium sees scope for collaboration in those circumstances with capable partners \u2013 and the possibility of special rates where the technology could be of benefit.\u003C\/p\u003E\u003Cp\u003ESample preparation costs just a few cents, the same as for any optical microscope, and does not require a medical specialist, Kuisma said, adding that other potential applications include systems for use in veterinary medicine.\u003C\/p\u003E\u003Cp\u003E\u2018Anybody who can prepare a slide can use the technology,\u2019 he added.\u003C\/p\u003E\u003Cp\u003EBy putting the technology within the reach of clinics and small or medium-sized hospitals, he sees potential for linking patients with smart diagnostics and medical expertise that would otherwise be out of reach.\u003C\/p\u003E\u003Cp\u003E\u003Cem\u003EThe research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.\u003C\/em\u003E\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-sd3lt3fc3sbjzebzwb4kqbulg2mzvr3czx0gnsjgfsk\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-sd3Lt3Fc3SbJzeBZwB4KQbulg2mZvr3cZX0gNSJgfSk\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]