[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/7158\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003EZeroing in on baby exoplanets could reveal how they form\u003C\/h2\u003E\u003Cp\u003EThe known exoplanets are certainly an eclectic bunch. They range in size from small rocky planets, like Earth, to gas giants that are many times bigger than Jupiter.\u003C\/p\u003E\u003Cp\u003ESome have meandering orbits, whereas others orbit not one star but two. Some have the modest mass and temperatures that are thought necessary to support life, while some are hellish balls of heat and crushing gravity. Some exoplanets appear to orbit their stars alone, while others orbit along with several other planets, like Earth in our solar system.\u003C\/p\u003E\u003Cp\u003EThe vast majority of those we\u2019ve discovered so far, however, are Earth- to Jupiter-sized planets that orbit very close to their host stars \u2013 often closer than Mercury orbits the sun. Astronomers are trying to understand how these close-orbiting planets came into existence by studying examples in different \u2013 preferably early \u2013 stages of formation.\u003C\/p\u003E\u003Cp\u003EBut young, faint exoplanets are hard to make out amid the glare of a highly active parent star. As a group led by Dr Jerome Bouvier at the Grenoble Institute of Planetology and Astrophysics in France asks on its website: \u2018Have you ever tried to listen to Sibelius next to a jackhammer?\u2019\u003C\/p\u003E\u003Cp\u003ETo see through the noise, Dr Bouvier and colleagues are employing some of the world\u2019s most powerful telescope arrays, such as the European Southern Observatory\u2019s Very Large Telescope Interferometer on the Paranal mountain in Chile. Meanwhile, computer simulations of how a young planet disturbs the disc of gas and dust surrounding its nascent star will help them know how to spot young exoplanets in real space.\u003C\/p\u003E\u003Cp\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u0026#039;One million years \u2013 (for an exoplanet) that corresponds to about two days on the scale of a human lifetime.\u0026#039;\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EProf. Jerome Bouvier, Grenoble Institute of Planetology and Astrophysics, France\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EClose-orbiting\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EThe researchers hope that their project, \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/rcn\/210985\/factsheet\/en\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003ESPIDI\u003C\/a\u003E, will lead to the discovery of close-orbiting exoplanets as they are forming, when they are about a million years old. \u2018One million years \u2013\u0026nbsp;that corresponds to about two days on the scale of a human lifetime,\u2019 said Dr Bouvier.\u003C\/p\u003E\u003Cp\u003EOne and a half years in, the project is still too new to have delivered any results. But by measuring the properties of close-orbiting exoplanets in their baby phases, the researchers aim to understand how they are born.\u003C\/p\u003E\u003Cp\u003EThe project will probably not shed light on the formation of exoplanets with other types of orbit, however. And the type of orbit is important, because it determines the conditions on an exoplanet\u2019s surface \u2013\u0026nbsp;and potentially whether it is habitable.\u003C\/p\u003E\u003Cp\u003EEach type of exoplanet and exoplanet orbit could be studied individually. But Professor Richard Alexander of the University of Leicester in the UK believes that by studying different types of exoplanets orbiting different stars there is less chance of missing important processes that help make up the big picture of planetary formation.\u003C\/p\u003E\u003Cp\u003E\u2018To use a very poor analogy: if you could only see one part of an elephant \u2013 its trunk, say \u2013 you would end up with a very different understanding of elephants to someone who could only see its toes,\u2019 he said. \u2018By looking at different types of (exoplanet) systems, we\u0027re trying our best to step back and look at the whole of the \u201cplanet-formation elephant\u201d, rather than just one part of it.\u2019\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003EStar\u0027s disc\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003ESomehow, the way that a young exoplanet interacts with its star\u2019s disc of dust and gas determines the type of exoplanet that will ultimately form. Prof. Alexander\u2019s project, \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/rcn\/202584\/factsheet\/en\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EBuildingPlanS\u003C\/a\u003E, involves developing computer simulations that predict the effect of different formation processes.\u003C\/p\u003E\u003Cp\u003EThese simulations can be tested against observations to see whether the processes they describe are accurate.\u003C\/p\u003E\u003Cp\u003EThe approach is paying off. In \u003Ca href=\u0022https:\/\/ui.adsabs.harvard.edu\/abs\/2018MNRAS.475.5296D\/abstract\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003Eone recent study\u003C\/a\u003E, led by Prof. Alexander\u2019s colleague Dr Dipierro at the University of Leicester, UK, the computer simulations suggested that a ring observed in the disc of a star called Elias 24 is the path cleared by an orbiting, as-yet unidentified, gas-giant planet.\u003C\/p\u003E\u003Cp\u003ETo really learn something new about planetary formation, however, the researchers want to predict something that has not yet been observed. \u2018Then we can use new observations to test the physics directly, and maximise the understanding we gain from all this new knowledge,\u2019 said Prof. Alexander.\u003C\/p\u003E\u003Cp\u003EAstrophysicists know that, in the very beginning, planets form as dust and gas accumulate under gravity. But this earliest phase of planet formation is especially hard to study.\u003C\/p\u003E\u003Cp\u003EThe trouble is that the dust and the gas around young stars each evolve in very complex ways, and studying how they form planets together requires a lot of expertise and computing power. Traditionally, therefore, dust and gas have been simulated as separate processes.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003E\u200bKnotted\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EBut as Dr Mario Flock of the Max Planck Institute for Astronomy in Heidelberg, Germany, points out, the two processes cannot be truly separated. For instance, the presence of dust can reduce turbulence in the gas, while the turbulence of the gas impacts the size and fragmentation of the dust grains.\u003C\/p\u003E\u003Cp\u003EIn a project called \u003Ca href=\u0022https:\/\/cordis.europa.eu\/project\/rcn\/212086\/factsheet\/en\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EUFOS\u003C\/a\u003E, Dr Flock and colleagues are starting to unite gas and dust simulations for the first time, to accurately describe some of the earliest stages of planetary formation. Their hope is to explain some of the features seen in very young stellar disks \u2013 spirals and rings \u2013 as the footprints of embryonic dust grains clumping together.\u003C\/p\u003E\u003Cp\u003EThe biggest challenge here, says Dr Flock, is finding the right scales of time and space over which gas and dust interact with the most influence. \u2018That requires huge expertise in magneto-hydrodynamics, dust coagulation, numerical tools and high-performance computing.\u003C\/p\u003E\u003Cp\u003E\u2018If we succeed to link the sites of grain growth and planet formation with current observations \u2013\u0026nbsp;that would be the highest goal,\u2019 he continued. \u2018It would help us to understand what\u2019s currently happening in systems we observe now.\u2019\u003C\/p\u003E\u003Cp\u003E\u003Cem\u003EThe research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.\u003C\/em\u003E\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ESlideshow: The weird and wonderful world of exoplanets \u003C\/strong\u003E\u003Cem\u003E(click to launch)\u003C\/em\u003E\u003C\/p\u003E\u003Cp\u003E\n \n\n\n\n\u003Csection class=\u0022ecl-gallery\u0022 data-ecl-auto-init=\u0022Gallery\u0022 data-ecl-gallery-visible-items=\u00228\u0022 data-ecl-gallery\u003E\u003Cul class=\u0022ecl-gallery__list\u0022\u003E\u003Cli class=\u0022ecl-gallery__item\u0022\u003E\u003Ca\n href=\u0022\/sites\/default\/files\/hm\/Artist%27s_concept_of_PSR_B1257%2B12_system.jpg\u0022\n data-ecl-gallery-item\n class=\u0022ecl-gallery__item-link\u0022aria-label=\u0022Some exoplanets orbit pulsars - the dead remains of massive stars. PSR 1267+12 B, also named Poltergeist, is one such planet. It is part of a three-planet system that survived a supernova explosion and is now orbiting a pulsar in the constellation of Virgo. Image credit - NASA\/JPL-Caltech\/R. Hurt (SSC), licensed under CC0\u0022\u003E\u003Cfigure class=\u0022ecl-gallery__image-container\u0022\u003E\u003Cpicture class=\u0022ecl-picture ecl-gallery__picture\u0022\u003E\u003Cimg \n class=\u0022ecl-gallery__image\u0022\n src=\u0022\/sites\/default\/files\/hm\/Artist%27s_concept_of_PSR_B1257%2B12_system.jpg\u0022\n alt=\u0022Some exoplanets orbit pulsars - the dead remains of massive stars. PSR 1267+12 B, also named Poltergeist, is one such planet. It is part of a three-planet system that survived a supernova explosion and is now orbiting a pulsar in the constellation of Virgo. Image credit - NASA\/JPL-Caltech\/R. Hurt (SSC), licensed under CC0\u0022 \n \/\u003E\u003C\/picture\u003E\u003Cfigcaption\n class=\u0022ecl-gallery__description\u0022\n data-ecl-gallery-description\n \u003ESome exoplanets orbit pulsars - the dead remains of massive stars. PSR 1267+12 B, also named Poltergeist, is one such planet. It is part of a three-planet system that survived a supernova explosion and is now orbiting a pulsar in the constellation of Virgo. Image credit - NASA\/JPL-Caltech\/R. Hurt (SSC), licensed under CC0\u003C\/figcaption\u003E\u003C\/figure\u003E\u003C\/a\u003E\u003C\/li\u003E\u003C\/ul\u003E\u003Cdiv class=\u0022ecl-gallery__footer\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__info\u0022\u003E\u003Cstrong class=\u0022ecl-gallery__info-total\u0022 data-ecl-gallery-count\u003E0\u003C\/strong\u003Emedia items\u003Cbutton class=\u0022ecl-button ecl-button--ghost ecl-gallery__view-all\u0022 type=\u0022submit\u0022 data-ecl-gallery-all data-ecl-gallery-collapsed-label=\u0022See\u0026#x20;all\u0022 data-ecl-gallery-expanded-label=\u0022Collapse\u0022\u003ESee all\u003C\/button\u003E\u003C\/div\u003E\u003C\/div\u003E\u003Cdialog class=\u0022ecl-gallery__overlay\u0022 data-ecl-gallery-overlay\u003E\u003Cheader class=\u0022ecl-gallery__close\u0022 data-ecl-gallery-overlay-header\u003E\u003Cbutton class=\u0022ecl-button ecl-button--ghost ecl-gallery__close-button\u0022 type=\u0022submit\u0022 data-ecl-gallery-close\u003E\u003Cspan class=\u0022ecl-button__container\u0022\u003E\u003Cspan class=\u0022ecl-button__label\u0022 data-ecl-label=\u0022true\u0022\u003EClose\u003C\/span\u003E\u003Csvg\n class=\u0022ecl-icon ecl-icon--s ecl-button__icon ecl-button__icon--after\u0022\n focusable=\u0022false\u0022\n aria-hidden=\u0022true\u0022\n data-ecl-icon\u003E\u003Cuse xlink:href=\u0022\/themes\/contrib\/oe_theme\/dist\/ec\/images\/icons\/sprites\/icons.svg#close\u0022\u003E\u003C\/use\u003E\u003C\/svg\u003E\u003C\/span\u003E\u003C\/button\u003E\u003C\/header\u003E\u003Csection class=\u0022ecl-gallery__slider\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__slider-media-container\u0022 data-ecl-gallery-overlay-media\u003E\u003C\/div\u003E\u003C\/section\u003E\u003Cfooter class=\u0022ecl-gallery__detail\u0022 data-ecl-gallery-overlay-footer\u003E\u003Cdiv class=\u0022ecl-container\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__detail-actions\u0022\u003E\u003Ca\n href=\u0022\u0022\n class=\u0022ecl-link ecl-link--standalone ecl-link--icon ecl-link--icon-after ecl-gallery__share\u0022\n data-ecl-gallery-overlay-share\n\u003E\u003Cspan class=\u0022ecl-link__label\u0022\u003EShare\u003C\/span\u003E\u003Csvg\n class=\u0022ecl-icon ecl-icon--fluid ecl-link__icon\u0022\n focusable=\u0022false\u0022\n aria-hidden=\u0022true\u0022\n \u003E\u003Cuse xlink:href=\u0022\/themes\/contrib\/oe_theme\/dist\/ec\/images\/icons\/sprites\/icons.svg#share\u0022\u003E\u003C\/use\u003E\u003C\/svg\u003E\u003C\/a\u003E\u003C\/div\u003E\u003Cdiv\n class=\u0022ecl-gallery__detail-description\u0022\n data-ecl-gallery-overlay-description\n \u003ESome exoplanets orbit pulsars - the dead remains of massive stars. PSR 1267+12 B, also named Poltergeist, is one such planet. It is part of a three-planet system that survived a supernova explosion and is now orbiting a pulsar in the constellation of Virgo. Image credit - NASA\/JPL-Caltech\/R. Hurt (SSC), licensed under CC0\u003C\/div\u003E\u003Cdiv class=\u0022ecl-gallery__pager\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__detail-counter\u0022\u003E\u003Cspan data-ecl-gallery-overlay-counter-current\u003E0\u003C\/span\u003E \/ \u003Cspan data-ecl-gallery-overlay-counter-max\u003E0\u003C\/span\u003E\u003C\/div\u003E\u003C\/div\u003E\u003C\/div\u003E\u003C\/footer\u003E\u003C\/dialog\u003E\u003C\/section\u003E\n\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-ehzp5ybuf1osyi0l9qeysqkgu69kerkt6wgjxem-dxy\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-ehzp5yBuf1OSyI0L9qeySqKgU69kErkt6wgjxem_dxY\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]