[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/6371\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003ETwisting design of fusion reactor is thanks to supercomputers\u003C\/h2\u003E\u003Cp\u003EThe breakthrough design of the fusion reactor, located in Greifswald, Germany, was only possible using extremely powerful computers known as supercomputers.\u003C\/p\u003E\u003Cp\u003E\u2018It looks a little bit like an alien ship. But that\u0027s just the outcome of a very systemic physics and engineering process that is behind it,\u2019 explained project leader Professor Thomas Klinger of the Max-Planck-Institute for Plasma Physics in Germany.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EThe strange-looking layout of the\u0026nbsp;Wendelstein 7-X, created with the help of EU research funds, is a result of the unique needs of its stellarator design, so-named because it mimics the conditions taking place inside stars, where huge amounts of energy are released by fusing hydrogen into helium.\u003C\/p\u003E\u003Cp\u003ENuclear fusion could provide cheap, clean energy if attempts to build a fully operational reactor are successful.\u0026nbsp;However, it is only possible at incredibly high temperatures, around 100 million degrees Celsius, where electrons are stripped from hydrogen atoms to create ionised plasma. Such plasma must be kept hot enough for fusion to occur and material walls would cool it down, which is why scientists must trap the plasma using powerful magnets.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003E\u2018The magnetic field coils have to have just the shape to create the right magnetic field,\u2019 Prof. Klinger said. \u2018We have been doing a long research phase of 20 years in which it was found out what the actual field is we need, or the plasma needs, for being well-confined.\u2019\u003C\/p\u003E\u003Cp\u003EThose requirements led to the Wendelstein device, where scientists, with the help of the supercomputers, created a uniquely shaped superconducting magnet system to hold the plasma. That is then surrounded by an outer vessel to keep the coils cool in a vacuum at -270 degrees Celsius with liquid helium.\u003C\/p\u003E\u003Cp\u003E\n \n\n\n\n\u003Csection class=\u0022ecl-gallery\u0022 data-ecl-auto-init=\u0022Gallery\u0022 data-ecl-gallery-visible-items=\u00228\u0022 data-ecl-gallery\u003E\u003Cul class=\u0022ecl-gallery__list\u0022\u003E\u003Cli class=\u0022ecl-gallery__item\u0022\u003E\u003Ca\n href=\u0022\/sites\/default\/files\/hm\/5.%20w7x_plasma.jpg\u0022\n data-ecl-gallery-item\n class=\u0022ecl-gallery__item-link\u0022aria-label=\u0022In December 2015, one milligram of helium was heated to one million degrees Celsius to create the first plasma in the Wendelstein 7-X reactor. Image courtesy of the Max-Planck-Institute for Particle Physics\u0022\u003E\u003Cfigure class=\u0022ecl-gallery__image-container\u0022\u003E\u003Cpicture class=\u0022ecl-picture ecl-gallery__picture\u0022\u003E\u003Cimg \n class=\u0022ecl-gallery__image\u0022\n src=\u0022\/sites\/default\/files\/hm\/5.%20w7x_plasma.jpg\u0022\n alt=\u0022In December 2015, one milligram of helium was heated to one million degrees Celsius to create the first plasma in the Wendelstein 7-X reactor. Image courtesy of the Max-Planck-Institute for Particle Physics\u0022 \n \/\u003E\u003C\/picture\u003E\u003Cfigcaption\n class=\u0022ecl-gallery__description\u0022\n data-ecl-gallery-description\n \u003EIn December 2015, one milligram of helium was heated to one million degrees Celsius to create the first plasma in the Wendelstein 7-X reactor. Image courtesy of the Max-Planck-Institute for Particle Physics\u003C\/figcaption\u003E\u003C\/figure\u003E\u003C\/a\u003E\u003C\/li\u003E\u003C\/ul\u003E\u003Cdiv class=\u0022ecl-gallery__footer\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__info\u0022\u003E\u003Cstrong class=\u0022ecl-gallery__info-total\u0022 data-ecl-gallery-count\u003E0\u003C\/strong\u003Emedia items\u003Cbutton class=\u0022ecl-button ecl-button--ghost ecl-gallery__view-all\u0022 type=\u0022submit\u0022 data-ecl-gallery-all data-ecl-gallery-collapsed-label=\u0022See\u0026#x20;all\u0022 data-ecl-gallery-expanded-label=\u0022Collapse\u0022\u003ESee all\u003C\/button\u003E\u003C\/div\u003E\u003C\/div\u003E\u003Cdialog class=\u0022ecl-gallery__overlay\u0022 data-ecl-gallery-overlay\u003E\u003Cheader class=\u0022ecl-gallery__close\u0022 data-ecl-gallery-overlay-header\u003E\u003Cbutton class=\u0022ecl-button ecl-button--ghost ecl-gallery__close-button\u0022 type=\u0022submit\u0022 data-ecl-gallery-close\u003E\u003Cspan class=\u0022ecl-button__container\u0022\u003E\u003Cspan class=\u0022ecl-button__label\u0022 data-ecl-label=\u0022true\u0022\u003EClose\u003C\/span\u003E\u003Csvg\n class=\u0022ecl-icon ecl-icon--s ecl-button__icon ecl-button__icon--after\u0022\n focusable=\u0022false\u0022\n aria-hidden=\u0022true\u0022\n data-ecl-icon\u003E\u003Cuse xlink:href=\u0022\/themes\/contrib\/oe_theme\/dist\/ec\/images\/icons\/sprites\/icons.svg#close\u0022\u003E\u003C\/use\u003E\u003C\/svg\u003E\u003C\/span\u003E\u003C\/button\u003E\u003C\/header\u003E\u003Csection class=\u0022ecl-gallery__slider\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__slider-media-container\u0022 data-ecl-gallery-overlay-media\u003E\u003C\/div\u003E\u003C\/section\u003E\u003Cfooter class=\u0022ecl-gallery__detail\u0022 data-ecl-gallery-overlay-footer\u003E\u003Cdiv class=\u0022ecl-container\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__detail-actions\u0022\u003E\u003Ca\n href=\u0022\u0022\n class=\u0022ecl-link ecl-link--standalone ecl-link--icon ecl-link--icon-after ecl-gallery__share\u0022\n data-ecl-gallery-overlay-share\n\u003E\u003Cspan class=\u0022ecl-link__label\u0022\u003EShare\u003C\/span\u003E\u003Csvg\n class=\u0022ecl-icon ecl-icon--fluid ecl-link__icon\u0022\n focusable=\u0022false\u0022\n aria-hidden=\u0022true\u0022\n \u003E\u003Cuse xlink:href=\u0022\/themes\/contrib\/oe_theme\/dist\/ec\/images\/icons\/sprites\/icons.svg#share\u0022\u003E\u003C\/use\u003E\u003C\/svg\u003E\u003C\/a\u003E\u003C\/div\u003E\u003Cdiv\n class=\u0022ecl-gallery__detail-description\u0022\n data-ecl-gallery-overlay-description\n \u003EIn December 2015, one milligram of helium was heated to one million degrees Celsius to create the first plasma in the Wendelstein 7-X reactor. Image courtesy of the Max-Planck-Institute for Particle Physics\u003C\/div\u003E\u003Cdiv class=\u0022ecl-gallery__pager\u0022\u003E\u003Cdiv class=\u0022ecl-gallery__detail-counter\u0022\u003E\u003Cspan data-ecl-gallery-overlay-counter-current\u003E0\u003C\/span\u003E \/ \u003Cspan data-ecl-gallery-overlay-counter-max\u003E0\u003C\/span\u003E\u003C\/div\u003E\u003C\/div\u003E\u003C\/div\u003E\u003C\/footer\u003E\u003C\/dialog\u003E\u003C\/section\u003E\n\u003C\/p\u003E\u003Cp\u003EKeeping the plasma confined is the number one challenge faced by scientists. In February, the project began testing the system with hydrogen plasma for the first time.\u003C\/p\u003E\u003Cp\u003E\u2018The first hydrogen plasma had a duration of 40 milliseconds, so pretty short. Since then, we have made a lot of progress, and we were able to create hydrogen plasma more recently for 8 seconds. So that\u2019s an increase by a factor of 200,\u2019 Prof. Klinger said.\u003C\/p\u003E\u003Cp\u003EBy the summer of next year, the team hopes to be running the stellarator at full power for ten seconds, after installing more graphite elements for the wall. After that, they plan to introduce active water cooling, which they hope will enable them to run the device for 30 minutes.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong style=\u0022font-size: 13.008px; line-height: 1.538em;\u0022\u003EWild design\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EThe wild design of the stellarator is crucial to giving scientists the greatest flexibility to try out different magnetic fields to see how the plasma behaves and if the confinement is getting better.\u003Cdiv class=\u0022tw-text-center tw-bg-bluelightest tw-p-12 tw-my-12 tw--mx-16\u0022\u003E\n \u003Ch3 class=\u0022tw-font-sans tw-font-bold tw-text-blue tw-uppercase tw-text-lg tw-mb-8\u0022\u003EThe Issue\u003C\/h3\u003E\n \u003Cspan class=\u0022tw-inline-block tw-w-1\/6 tw-h-1 tw-bg-blue tw-mb-8\u0022\u003E\u003C\/span\u003E\n \u003Cp\u003EGlobal warming will cause sea levels to rise 3.2 centimetres by the year 2025, and possibly 0.82 metres by the end of the century, according to projections compiled by the UN\u2019s \u003Ca href=\u0022https:\/\/www.ipcc.ch\/report\/ar5\/\u0022 target=\u0022_blank\u0022\u003EIntergovernmental Panel on Climate Change\u003C\/a\u003E.\u003C\/p\u003E\u003Cp\u003ETo prevent catastrophic sea level rises and stop the world warming by over 2 degrees Celsius compared with pre-industrial levels, EU and world leaders agreed during the COP21 conference in Paris to rein in greenhouse gas emissions.\u003C\/p\u003E\u003Cp\u003EIf it can be made to work cost-effectively, nuclear fusion has the potential to dramatically reduce CO2 emissions in Europe, which were \u003Ca href=\u0022http:\/\/ec.europa.eu\/eurostat\/statistics-explained\/index.php\/Greenhouse_gas_emission_statistics\u0022 target=\u0022_blank\u0022\u003Eestimated \u003C\/a\u003Eat 4 611 million tonnes in 2013.\u0026nbsp;\u003C\/p\u003E\n\u003C\/div\u003E\n\u003C\/p\u003E\u003Cp\u003E\u2018We have seven different current circuits, and we can control each current circuit to run the coil separately. That gives us, literally speaking, seven knobs to turn \u2026 with which we create different magnetic field configurations,\u2019 Prof. Klinger said.\u003C\/p\u003E\u003Cp\u003ETrying to find the best confining and heat insulating field is one of the main scientific tasks of the experimental device, but the complex behaviour of the trapped plasma makes that difficult.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EThe trick of the Wendelstein\u2019s stellarator design is that the external magnetic coils twist the entire magnetic field itself, like a corkscrew, to counteract against unwanted drift motions.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003EIn the south of France, researchers at the ITER project are testing an alternative, \u003Ca href=\u0022http:\/\/horizon-magazine.eu\/article\/worlds-biggest-freezer-cool-hotter-sun-reactor_en.html\u0022 target=\u0022_blank\u0022\u003Edoughnut-shaped fusion reactor\u003C\/a\u003E design, known as a tokamak.\u003C\/p\u003E\u003Cp\u003EWhile tokamaks operate in pulses, where a strong electric current in the plasma is ramped up and down, the idea behind the stellarator is that the magnetic field is twisted by the external magnetic field coils which means the plasma can be held in a steady state.\u003C\/p\u003E\u003Cp\u003E\u2018What we are aiming for is to maintain the plasma for 30 minutes, so 1 800 seconds,\u2019 Prof. Klinger said. \u2018In a stellarator, you can create the plasma and basically it stands there without interruption for hours, days, months ... or years.\u2019\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ETurbulence\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EWhat has held stellarators back until recently is getting the plasma right.\u003C\/p\u003E\u003Cp\u003EMuch like the violent surface of the sun, waves in the plasma create a constant mixture of uneven forces. The plasma, sitting in the magnetic field, is not flowing calmly, but rather sloshing about, reacting to magnetic fields but also generating its own.\u003C\/p\u003E\u003Cp\u003E\u2018We call that the \u201cfluid picture\u201d of a plasma,\u2019 Prof. Klinger said. \u2018It\u0027s always just a picture. We scientists only make a picture of reality, and that is a useful picture how to describe what is happening.\u2019\u0026nbsp;\u003C\/p\u003E\u003Cp\u003ESeen from another perspective, plasma behaves more like a gas, trying to expand and escape from its container. And turbulence has caused a number of headaches.\u003C\/p\u003E\u003Cp\u003E\u2018Without turbulence, fusion devices would be much smaller than what we have now, because in order to counteract the heat loss, you have to make the machine big,\u2019 Prof. Klinger explained.\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u2018What we are aiming for is to maintain the plasma for 30 minutes.\u2019\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EProfessor Thomas Klinger, Max-Planck-Institute for Plasma Physics, Germany\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003EThe larger the volume of the reactor, the more energy which can be created. That bigger amount offsets energy that escapes confinement through the surface.\u003C\/p\u003E\u003Cp\u003E\u2018If you can find ways to reduce the turbulence \u2026 you make the heat insulation properties of the plasma better, and you can basically build smaller machines,\u2019 Prof. Klinger said.\u003C\/p\u003E\u003Cp\u003EWhile large 1 gigawatt fusion plants could be the backbone of an electrical network, smaller machines could make easier-to-build power stations for industrial plants situated right inside cities.\u003C\/p\u003E\u003Cp\u003EThat\u2019s because unlike nuclear fission plants, there is no chain reaction that needs to be carefully controlled.\u003C\/p\u003E\u003Cp\u003E\u2018If anything goes wrong, if somebody pushes the wrong button or an aeroplane flies into the power station, then the plasma just stops existing. Very quickly, within a tenth of a second, it recombines at the wall,\u2019 Prof. Klinger said.\u003C\/p\u003E\u003Cp\u003E\u2018The plasma is so thin, there\u0027s so little mass, at a power station we are talking a maximum of 1 gram of plasma. Compare that to the 30 000 ton weight of the machine, and then guess who wins.\u2019\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-m7kfh84f1w0mg9h357c5l-dz9bfukbeqdnlvkwq-1m\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-M7Kfh84f1W0Mg9h357c5l_DZ9bfuKbeQDnLvkwQ__1M\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]