[{"command":"settings","settings":{"ajaxPageState":{"theme":"hm_theme","theme_token":"4BDBozf3f_KaPgHZGB9KbyB-uVuG5rXH-JI9oFgEbm4","libraries":"eJwDAAAAAAE"},"ajaxTrustedUrl":{"form_action_p_pvdeGsVG5zNF_XLGPTvYSKCf43t8qZYSwcfZl2uzM":true},"pluralDelimiter":"\u0003","user":{"uid":0,"permissionsHash":"2af85631393b514cbde3779a1f71d92618d53b94b54ea1960d28b2e2d121ff12"}},"merge":true},{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/6284\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003ELiving heart valves grown in laboratories\u003C\/h2\u003E\u003Cp\u003EUp to 1 % of babies are born with severe heart defects, and with current technology that means multiple rounds of open-heart surgery as the child grows.\u003Cdiv class=\u0022tw-text-center tw-bg-bluelightest tw-p-12 tw-my-12 tw--mx-16\u0022\u003E\n \u003Ch3 class=\u0022tw-font-sans tw-font-bold tw-text-blue tw-uppercase tw-text-lg tw-mb-8\u0022\u003EThe Issue\u003C\/h3\u003E\n \u003Cspan class=\u0022tw-inline-block tw-w-1\/6 tw-h-1 tw-bg-blue tw-mb-8\u0022\u003E\u003C\/span\u003E\n \u003Cp\u003EThe most common treatment for heart defects which are present from birth is a combination of surgery and catheterisation - where a long thin tube is threaded through the blood vessels to the heart, allowing doctors to do diagnostic tests.\u003C\/p\u003E\u003Cp\u003ESurgery is often first performed in very young babies, as early treatment can be the most effective way of repairing the heart.\u003C\/p\u003E\u003Cp\u003EAs a result of these proceures, most children born with heart defects go on to live normal healthy lives.\u003C\/p\u003E\n\u003C\/div\u003E\n\u003C\/p\u003E\u003Cp\u003EHowever, techniques under development by a trans-European research collaboration known as LifeValve would require just one minimally invasive heart operation as the tissue would then grow naturally with the child.\u003C\/p\u003E\u003Cp\u003E\u2018We\u0027ve been able to show that the technologies work, and have secured enough funding to finish the project and fulfil the regulator\u0027s requirements for starting a large-scale clinical trial,\u2019 said Professor Simon Hoerstrup, head of the Swiss Center of Regenerative Medicine at the University of Z\u00fcrich.\u003C\/p\u003E\u003Cp\u003EThe cells are placed onto a 3D scaffold and left to multiply. Eventually the scaffold disintegrates, leaving just the living tissue heart valve.\u003C\/p\u003E\u003Cp\u003EThe EU-funded project is part of a revolutionary field of medicine known as tissue engineering where doctors hope to use a patient\u2019s own cells to grow replacement body parts in the laboratory.\u003C\/p\u003E\u003Cp\u003EOne of the major goals of tissue engineering is to grow a complete, fully functioning organ, and in 2011 surgeons in Sweden took a step in this direction, successfully carrying out the world\u2019s first synthetic organ transplant. They covered an artificial replacement windpipe with live cells grown from the patient\u2019s own body and implanted it in a 36-year-old Eritrean cancer patient.\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003E3D printing\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EOne of the key techniques being used in tissue engineering is to use \u003Ca href=\u0022http:\/\/horizon-magazine.eu\/article\/live-cells-could-be-used-reconstruct-faces_en.html\u0022 target=\u0022_blank\u0022\u003E3D printing\u003C\/a\u003E\u0026nbsp;to build scaffolds so that live cells can be grown in the desired shape.\u003C\/p\u003E\u003Cp\u003EDr Declan Devine is at the cutting edge of scaffold technology. He travelled from Ireland to Harvard University in the US as part of the EU\u2019s Marie Sk\u0142odowska-Curie action to develop scaffolds that incorporate proteins to encourage cells to multiply, making the scaffold cheaper and more effective, under a research project known as NANOFACT.\u003Cspan\u003E\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u2018We\u0026#039;ve been able to show that the technologies work.\u2019\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EProfessor Simon Hoerstrup, Director, Swiss Centre of Regenerative Medicine, University of Z\u00fcrich\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/span\u003E\u003C\/p\u003E\u003Cp\u003ENormal scaffolds need the patient to undergo significant surgery to get enough cells, he said. \u2018In that sense our scaffolding using growth factors and naturally occurring products in synthetic matrixes enables us to get away from that.\u2019\u003C\/p\u003E\u003Cp\u003ENow his Marie Sk\u0142odowska-Curie grant is over and he\u2019s looking for funding to start testing his technology in people. If he is successful, he believes he could start trials in people in two years.\u003C\/p\u003E\u003Cp\u003EHowever, it will still be years until tissue engineering is on offer to patients.\u003C\/p\u003E\u003Cp\u003EThat\u2019s why the TECAS training project, funded by the EU, is bringing researchers from disciplines such as medicine, biology and engineering together with representatives from industry.\u003C\/p\u003E\u003Cp\u003E\u2018Getting them together around one table from the beginning \u2026 is significantly accelerating the process and shortening the time it takes for a medical invention to move from the bench to the bedside,\u2019 said Dr Sotirios Korossis from the coordinating institution, the \u003Cspan\u003EHannover Medical School\u0026nbsp;\u003C\/span\u003Ein Germany.\u003C\/p\u003E\u003Cp\u003E\u2018Normally, it would take 10 to 20 years to reach the market. With TECAS we are looking at five to seven years.\u2019\u003Cspan\u003E\n \n\n\n\u003Col class=\u0022ecl-timeline\u0022data-ecl-auto-init=\u0022Timeline\u0022 data-ecl-timeline\u003E\u003Cli\n class=\u0022ecl-timeline__item\u0022\n \u003E\u003Cdiv class=\u0022ecl-timeline__tooltip\u0022\u003E\u003Cdiv class=\u0022ecl-timeline__tooltip-arrow\u0022\u003E\u003C\/div\u003E\u003Cdiv class=\u0022ecl-timeline__label\u0022\u003E2000s onwards \u003C\/div\u003E\u003Cdiv class=\u0022ecl-timeline__title\u0022\u003EExpandable valves\u003C\/div\u003E\u003Cdiv class=\u0022ecl-timeline__content\u0022\u003E\u003Cp\u003EDevelopments such as spring-loaded and balloon-expandable valves means that surgeons are able to insert them through tubes known as catheters and expand them when they reach their destination. While this does not remove the damaged valve, it is a less-risky option for people who may not survive an operation. In 2014, French surgeons carried out the first complete heart valve replacement using an endoscope - a long, flexible tube inserted through two small incisions - indicating that full valve replacement surgery could become minimally invasive in the future.\u003C\/p\u003E\u003Cimg src=\u0022\/sites\/default\/files\/hm\/Endoscopy.jpg\u0022 alt=\u0022\u0022 \/\u003E\nDoctors can use endoscopes in heart valve replacement surgeries. Credit: Creative Commons\/ Linda Bartlett\n\u003C\/div\u003E\u003C\/div\u003E\u003C\/li\u003E\u003C\/ol\u003E\n\u003C\/span\u003E\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-qckfuqv3a1hqczwmlritbidloucnzdcke-q5npwrvb8\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-QCkFUQv3A1HqcZWmlRItbIdlouCNzDCKE_Q5NpwrVB8\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]