[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/6008\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003ERadiation shielding to protect a mission to Mars\u003C\/h2\u003E\u003Cp\u003EHarmful radiation comes from two main sources in space; low-energy protons emitted from the sun, known as the solar wind, and much higher energy particles known as galactic cosmic rays that originate outside the solar system.\u0026nbsp;\u003C\/p\u003E\u003Cp\u003ELong-term exposure to galactic cosmic rays and solar particles can lead to a significantly higher risk of developing cancer, researchers believe.\u003C\/p\u003E\u003Cp\u003EIncreasing the thickness of spacecraft walls would be enough to protect astronauts from low-energy particles from the sun, however high-energy galactic cosmic rays would interact with the shielding materials to produce even more radiation.\u003C\/p\u003E\u003Cp\u003EThe EU-funded SR2S project is developing magnetic shielding instead that can deflect these dangerous cosmic rays in the same way as the earth\u2019s magnetic shield protects humans from cosmic radiation.\u003C\/p\u003E\u003Cp\u003EThe idea, originally proposed in 1969 by space engineer Wernher von Braun, the so-called father of rocket science, is to use a superconducting magnet to create the shield.\u003C\/p\u003E\u003Cp\u003E\u2018As the magnetosphere deflects cosmic rays directed toward the earth, the magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew,\u2019 said Dr Riccardo Musenich, scientific and technical manager for the project.\u003C\/p\u003E\u003Cp\u003E\u2018SR2S is the first project which not only investigates the principles and the scientific problems (of magnetic shielding), but it also faces the complex issues in engineering.\u2019\u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u2018The magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew.\u2019\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EDr Riccardo Musenich, scientific and technical manager, SR2S\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp\u003E\u003Cstrong\u003ESuperconductors\u003C\/strong\u003E\u003C\/p\u003E\u003Cp\u003EThe project will evaluate the feasibility of making such a shield by the time it finishes at the end of 2015. To do this, it has turned to superconductors, materials that have no electrical resistance at extremely low temperatures, to help them solve one of the biggest problems with a magnetic shield - the weight of the large magnet required.\u003C\/p\u003E\u003Cp\u003ESuperconducting magnets, commonly found in MRI scanners, produce stronger, more efficient magnetic fields using smaller and lighter magnets than magnets made using conventional materials such as copper or aluminium.\u003C\/p\u003E\u003Cp\u003EOn earth, superconducting materials must be cooled to very low temperatures using liquid helium to utilize their superconducting properties, however the project has already found a solution that will work in space.\u003C\/p\u003E\u003Cp\u003E\u2018We have decided to use a new superconducting material, discovered in 2001: magnesium diboride or MgB2,\u2019 explained Dr Musenich. MgB2 can superconduct at 10 kelvin, or -263 degrees Celsius, which removes the need for liquid-helium cooling as this temperature is comparable with that of deep space.\u003C\/p\u003E\u003Cp\u003ESimulations of the magnetic system suggest that a 10-metre-diameter magnetic field could be produced by a system weighing less than half that of a comparable passive shield.\u003Cdiv class=\u0022moreinfoblock\u0022\u003E\n \u003Ch3\u003EHabitats for extreme environments\u003C\/h3\u003E\n \u003Cp\u003EOnce the astronauts have arrived on Mars with both themselves and their spacecraft intact, the thin atmosphere and weak magnetosphere means they still won\u2019t be safe from harmful radiation. Researchers on the SHEE project are attempting to reduce the economic and human cost of establishing outposts in the most inhospitable environments.\u003C\/p\u003E\u003Cp\u003EBy identifying common architectural considerations for extreme environments on earth and in space, the project will develop a self-deployable living and working space, which includes a rigid section to house life support systems, folding sections for workspaces and robotic motors to aid with deployment.\u003C\/p\u003E\u003Cp\u003EFuture versions of the SHEE habitat could also be used on earth, providing shelters in areas recently hit by natural disasters, or mobile laboratories in difficult-to-access environments. Initial construction of a prototype began in April 2014 and a fully operational habitat suitable for two people will be finished in 2016.\u003C\/p\u003E\u003Cp\u003EFor details, visit \u003Ca href=\u0022http:\/\/www.shee.eu\/main\u0022 target=\u0022_blank\u0022\u003Ehttp:\/\/www.shee.eu\/main\u003C\/a\u003E\u003C\/p\u003E\n\u003C\/div\u003E\n\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-bbp7y5wxnyfem-5rsgrpvfn1z-6iyfq-lnju-zmt6ga\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-bBP7y5WXNyFem_5RsgrpvFN1z_6iyFq-lnJU-ZMt6GA\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]