[{"command":"openDialog","selector":"#drupal-modal","settings":null,"data":"\u003Cdiv id=\u0022republish_modal_form\u0022\u003E\u003Cform class=\u0022modal-form-example-modal-form ecl-form\u0022 data-drupal-selector=\u0022modal-form-example-modal-form\u0022 action=\u0022\/en\/article\/modal\/5999\u0022 method=\u0022post\u0022 id=\u0022modal-form-example-modal-form\u0022 accept-charset=\u0022UTF-8\u0022\u003E\u003Cp\u003EHorizon articles can be republished for free under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.\u003C\/p\u003E\n \u003Cp\u003EYou must give appropriate credit. We ask you to do this by:\u003Cbr \/\u003E\n 1) Using the original journalist\u0027s byline\u003Cbr \/\u003E\n 2) Linking back to our original story\u003Cbr \/\u003E\n 3) Using the following text in the footer: This article was originally published in \u003Ca href=\u0027#\u0027\u003EHorizon, the EU Research and Innovation magazine\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003ESee our full republication guidelines \u003Ca href=\u0027\/horizon-magazine\/republish-our-stories\u0027\u003Ehere\u003C\/a\u003E\u003C\/p\u003E\n \u003Cp\u003EHTML for this article, including the attribution and page view counter, is below:\u003C\/p\u003E\u003Cdiv class=\u0022js-form-item form-item js-form-type-textarea form-item-body-content js-form-item-body-content ecl-form-group ecl-form-group--text-area form-no-label ecl-u-mv-m\u0022\u003E\n \n\u003Cdiv\u003E\n \u003Ctextarea data-drupal-selector=\u0022edit-body-content\u0022 aria-describedby=\u0022edit-body-content--description\u0022 id=\u0022edit-body-content\u0022 name=\u0022body_content\u0022 rows=\u00225\u0022 cols=\u002260\u0022 class=\u0022form-textarea ecl-text-area\u0022\u003E\u003Ch2\u003EComplex molecules could beat back drug-resistant bacteria\u003C\/h2\u003E\u003Cp dir=\u0022ltr\u0022\u003EFor decades, bacterial infections have been treated using naturally derived antibiotics. As a result, bacteria have been able to mutate and become resistant to them. Drug-resistant bacteria now kill 25 000 people each year across Europe and the United States, and the numbers are rising.\u0026nbsp;Over the past four years, more than a third of EU countries have experienced a significant increase in drug-resistant\u0026nbsp;E.\u0026nbsp;coli and klebsiella, a bacteria which can cause pneumonia.\u003C\/p\u003E\u003Cp\u003ETo make matters worse, there hasn\u2019t been a new antibiotic since 2003, leaving the world unprepared to tackle an epidemic. That is partly because\u0026nbsp;the obvious candidates for antibiotics have already been exploited by both nature and medicine.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003EHowever, new molecules being developed over the past four years by the EU-funded DIVINOCELL project represent a quantum leap in drug development. New technologies are allowing biologists to synthesise complex molecules and follow their interactions inside living organisms, giving them radical new ways to stop bacteria from multiplying. That is important because antibiotics work in the same way - by targeting bacteria as they multiply.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003E\u003Cstrong\u003EFluorescent molecules\u003C\/strong\u003E\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003EOne imaging technique that is being pushed to new limits is to fuse bacterial proteins to fluorescent molecules that shine when they interact inside bacteria. This novel method has revealed details about the mechanics of cell division which DIVINOCELL partners believe could be exploited by a new generation of highly targeted antibiotics. \u003Cblockquote class=\u0022tw-text-center tw-text-blue tw-font-bold tw-text-2xl lg:tw-w-1\/2 tw-border-2 tw-border-blue tw-p-12 tw-my-8 lg:tw-m-12 lg:tw--ml-16 tw-float-left\u0022\u003E\n \u003Cspan class=\u0022tw-text-5xl tw-rotate-180\u0022\u003E\u201c\u003C\/span\u003E\n \u003Cp class=\u0022tw-font-serif tw-italic\u0022\u003E\u2018These are exciting results ... but the work to turn them into drugs is only just beginning.\u2019\u003C\/p\u003E\n \u003Cfooter\u003E\n \u003Ccite class=\u0022tw-not-italic tw-font-normal tw-text-sm tw-text-black\u0022\u003EDr Joen Luirink, VU University, Amsterdam\u003C\/cite\u003E\n \u003C\/footer\u003E\n\u003C\/blockquote\u003E\n\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003EWhen bacteria divide, they produce a nanoscopic ring of proteins along their inside wall which contracts, curving the cell inwards and eventually splitting it into two identical parts. But for the offspring to be healthy, the protein ring, known as a divisome, must engage in a series of complex chemical reactions with DNA molecules, lipids and other components in the cell.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003EThe partners of DIVINOCELL set out to understand these interactions in order to find ways of blocking them and sabotaging the cell division process. To do this they also used protein crystallography, which fires X-rays at proteins to see how they work.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003EThe researchers focused on the germ Escherichia coli, which belongs to a class of particularly resilient bacteria protected by an elaborate double membrane. By feeding their data into computer simulations, scientists helped predict which chemical compounds would be likely to dock with the pathogen\u2019s divisome.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003E\u2018What we found was that a delicate interplay between different proteins is crucial to the formation of the divisome,\u2019 said DIVINOCELL\u2019s coordinator Professor Miguel Vicente, from the CSIC National Biotechnology Centre in Madrid. \u2018And some of the compounds that we studied had a measurable impact on this interplay.\u2019\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003E\u003Cspan class=\u0022img_legend\u0022 style=\u0022float: left;\u0022\u003E\u003Cfigure role=\u0022group\u0022\u003E\n\u003Cimg alt=\u0022DIVINOCELL coordinator Professor Miguel Vicente\u0022 height=\u0022200\u0022 src=\u0022\/research-and-innovation\/sites\/default\/files\/hm\/Divinoc%20ell-MV.jpg\u0022 title=\u0022DIVINOCELL coordinator Professor Miguel Vicente\u0022 width=\u0022314\u0022\u003E\n\u003Cfigcaption class=\u0022tw-italic tw-mb-4\u0022\u003EDIVINOCELL coordinator Professor Miguel Vicente\u003C\/figcaption\u003E\n\u003C\/figure\u003E\n\u003Cem\u003EDIVINOCELL coordinator Professor Miguel Vicente\u003C\/em\u003E\u003C\/span\u003E\u003C\/p\u003E\u003Cp\u003ENow the DIVINOCELL researchers are optimising the compounds to enhance their effect, and to check that they do not harm human cells in the process.\u003C\/p\u003E\u003Cp\u003ETo help researchers such as these as they go through these often costly early stages of drug development, the European Union and the European Federation of Pharmaceutical Industries and Associations (EFPIA) have set up the Innovative Medicines Initiative (IMI), which is Europe\u0027s largest public-private partnership.\u003C\/p\u003E\u003Cp\u003EWithin the IMI, academic and other public partners, SME\u2019s and pharmaceutical industry joined forces to spur the development of new antibiotics as part of an\u0026nbsp;extensive research programme on antibiotic resistance called \u0027New Drugs for Bad Bugs\u2019.\u003C\/p\u003E\u003Cp\u003EThis successfully public-private cooperation will continue under \u003Ca href=\u0022http:\/\/horizon-magazine.eu\/article\/uniting-6-000-researchers-crack-medicine-s-toughest-nuts-michel-goldman_en.html\u0022 target=\u0022_blank\u0022 rel=\u0022noopener noreferrer\u0022\u003EIMI2\u003C\/a\u003E, which will run from 2014 to 2024. As part of the ENABLE project within IMI\u2019s New Drugs for Bad Bugs programme, some of the DIVINOCELL partners are already developing their compounds into candidates for clinical testing.\u003C\/p\u003E\u003Cp dir=\u0022ltr\u0022\u003E\u2018These are exciting results,\u2019 said Dr Joen Luirink, from the VU University Amsterdam, one of the project partners, \u2018but the work to turn them into drugs is only just beginning.\u2019\u003C\/p\u003E\u003C\/textarea\u003E\n\u003C\/div\u003E\n\n \u003Cdiv id=\u0022edit-body-content--description\u0022 class=\u0022ecl-help-block description\u0022\u003E\n Please copy the above code and embed it onto your website to republish.\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003Cinput autocomplete=\u0022off\u0022 data-drupal-selector=\u0022form-7pt9xxdfexu4zysfcu3c54igolcbprq7frkusbwwtqg\u0022 type=\u0022hidden\u0022 name=\u0022form_build_id\u0022 value=\u0022form-7pt9XXdFExu4ZySFCU3c54iGoLCBPrQ7FRKusbWwTqg\u0022 \/\u003E\n\u003Cinput data-drupal-selector=\u0022edit-modal-form-example-modal-form\u0022 type=\u0022hidden\u0022 name=\u0022form_id\u0022 value=\u0022modal_form_example_modal_form\u0022 \/\u003E\n\u003C\/form\u003E\n\u003C\/div\u003E","dialogOptions":{"width":"800","modal":true,"title":"Republish this content"}}]